Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1-2axx+x\times 2-ax
Whakareatia ngā taha e rua o te whārite ki te x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2axx+x\times 2-ax
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2ax^{2}+x\times 2-ax
Whakareatia te x ki te x, ka x^{2}.
1-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Tangohia te 1 mai i ngā taha e rua.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x\times 2
Tangohia te x\times 2 mai i ngā taha e rua.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Whakareatia te -1 ki te 2, ka -2.
\left(-2x^{2}-x\right)a=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(-2x^{2}-x\right)a=-2x-1
He hanga arowhānui tō te whārite.
\frac{\left(-2x^{2}-x\right)a}{-2x^{2}-x}=\frac{-2x-1}{-2x^{2}-x}
Whakawehea ngā taha e rua ki te -2x^{2}-x.
a=\frac{-2x-1}{-2x^{2}-x}
Mā te whakawehe ki te -2x^{2}-x ka wetekia te whakareanga ki te -2x^{2}-x.
a=\frac{1}{x}
Whakawehe -1-2x ki te -2x^{2}-x.