Aromātai
e^{20}\approx 485165195.409789741
Pātaitai
Polynomial
eeeeeeeeeeeeeeeeeeee
Tohaina
Kua tāruatia ki te papatopenga
e^{2}eeeeeeeeeeeeeeeeee
Whakareatia te e ki te e, ka e^{2}.
e^{3}eeeeeeeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
e^{4}eeeeeeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 1 kia riro ai te 4.
e^{5}eeeeeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 1 kia riro ai te 5.
e^{6}eeeeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 1 kia riro ai te 6.
e^{7}eeeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 1 kia riro ai te 7.
e^{8}eeeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 7 me te 1 kia riro ai te 8.
e^{9}eeeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 8 me te 1 kia riro ai te 9.
e^{10}eeeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 9 me te 1 kia riro ai te 10.
e^{11}eeeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te 1 kia riro ai te 11.
e^{12}eeeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 11 me te 1 kia riro ai te 12.
e^{13}eeeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 1 kia riro ai te 13.
e^{14}eeeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 13 me te 1 kia riro ai te 14.
e^{15}eeeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 14 me te 1 kia riro ai te 15.
e^{16}eeee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 15 me te 1 kia riro ai te 16.
e^{17}eee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 16 me te 1 kia riro ai te 17.
e^{18}ee
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 17 me te 1 kia riro ai te 18.
e^{19}e
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 18 me te 1 kia riro ai te 19.
e^{20}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 19 me te 1 kia riro ai te 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}