Whakaoti mō x (complex solution)
x=\frac{-3+i\sqrt{16e-9}}{2e}\approx -0.551819162+1.080283934i
x=-\frac{3+i\sqrt{16e-9}}{2e}\approx -0.551819162-1.080283934i
Graph
Tohaina
Kua tāruatia ki te papatopenga
ex^{2}+3x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4e\times 4}}{2e}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi e mō a, 3 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4e\times 4}}{2e}
Pūrua 3.
x=\frac{-3±\sqrt{9+\left(-4e\right)\times 4}}{2e}
Whakareatia -4 ki te e.
x=\frac{-3±\sqrt{9-16e}}{2e}
Whakareatia -4e ki te 4.
x=\frac{-3±i\sqrt{-\left(9-16e\right)}}{2e}
Tuhia te pūtakerua o te 9-16e.
x=\frac{-3+i\sqrt{16e-9}}{2e}
Nā, me whakaoti te whārite x=\frac{-3±i\sqrt{-\left(9-16e\right)}}{2e} ina he tāpiri te ±. Tāpiri -3 ki te i\sqrt{-\left(9-16e\right)}.
x=\frac{-i\sqrt{16e-9}-3}{2e}
Nā, me whakaoti te whārite x=\frac{-3±i\sqrt{-\left(9-16e\right)}}{2e} ina he tango te ±. Tango i\sqrt{-\left(9-16e\right)} mai i -3.
x=-\frac{3+i\sqrt{16e-9}}{2e}
Whakawehe -3-i\sqrt{-9+16e} ki te 2e.
x=\frac{-3+i\sqrt{16e-9}}{2e} x=-\frac{3+i\sqrt{16e-9}}{2e}
Kua oti te whārite te whakatau.
ex^{2}+3x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
ex^{2}+3x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
ex^{2}+3x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{ex^{2}+3x}{e}=-\frac{4}{e}
Whakawehea ngā taha e rua ki te e.
x^{2}+\frac{3}{e}x=-\frac{4}{e}
Mā te whakawehe ki te e ka wetekia te whakareanga ki te e.
x^{2}+\frac{3}{e}x+\left(\frac{3}{2e}\right)^{2}=-\frac{4}{e}+\left(\frac{3}{2e}\right)^{2}
Whakawehea te \frac{3}{e}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2e}. Nā, tāpiria te pūrua o te \frac{3}{2e} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{e}x+\frac{9}{4e^{2}}=-\frac{4}{e}+\frac{9}{4e^{2}}
Pūrua \frac{3}{2e}.
x^{2}+\frac{3}{e}x+\frac{9}{4e^{2}}=\frac{\frac{9}{4}-4e}{e^{2}}
Tāpiri -\frac{4}{e} ki te \frac{9}{4e^{2}}.
\left(x+\frac{3}{2e}\right)^{2}=\frac{\frac{9}{4}-4e}{e^{2}}
Tauwehea x^{2}+\frac{3}{e}x+\frac{9}{4e^{2}}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2e}\right)^{2}}=\sqrt{\frac{\frac{9}{4}-4e}{e^{2}}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2e}=\frac{i\sqrt{-\left(9-16e\right)}}{2e} x+\frac{3}{2e}=-\frac{i\sqrt{16e-9}}{2e}
Whakarūnātia.
x=\frac{-3+i\sqrt{16e-9}}{2e} x=-\frac{3+i\sqrt{16e-9}}{2e}
Me tango \frac{3}{2e} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}