Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{ex-4u}{m}\text{, }&m\neq 0\\a\in \mathrm{C}\text{, }&x=\frac{4u}{e}\text{ and }m=0\end{matrix}\right.
Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=-\frac{ex-4u}{a}\text{, }&a\neq 0\\m\in \mathrm{C}\text{, }&x=\frac{4u}{e}\text{ and }a=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{ex-4u}{m}\text{, }&m\neq 0\\a\in \mathrm{R}\text{, }&x=\frac{4u}{e}\text{ and }m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}m=-\frac{ex-4u}{a}\text{, }&a\neq 0\\m\in \mathrm{R}\text{, }&x=\frac{4u}{e}\text{ and }a=0\end{matrix}\right.
Graph
Pātaitai
Linear Equation
e x + a m = 4 u
Tohaina
Kua tāruatia ki te papatopenga
am=4u-ex
Tangohia te ex mai i ngā taha e rua.
am=-ex+4u
Whakaraupapatia anō ngā kīanga tau.
ma=4u-ex
He hanga arowhānui tō te whārite.
\frac{ma}{m}=\frac{4u-ex}{m}
Whakawehea ngā taha e rua ki te m.
a=\frac{4u-ex}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
am=4u-ex
Tangohia te ex mai i ngā taha e rua.
\frac{am}{a}=\frac{4u-ex}{a}
Whakawehea ngā taha e rua ki te a.
m=\frac{4u-ex}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
am=4u-ex
Tangohia te ex mai i ngā taha e rua.
am=-ex+4u
Whakaraupapatia anō ngā kīanga tau.
ma=4u-ex
He hanga arowhānui tō te whārite.
\frac{ma}{m}=\frac{4u-ex}{m}
Whakawehea ngā taha e rua ki te m.
a=\frac{4u-ex}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
am=4u-ex
Tangohia te ex mai i ngā taha e rua.
\frac{am}{a}=\frac{4u-ex}{a}
Whakawehea ngā taha e rua ki te a.
m=\frac{4u-ex}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}