Aromātai
\frac{129e}{520}\approx 0.674342992
Whakaroha
\frac{129e}{520}
Tohaina
Kua tāruatia ki te papatopenga
e\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
e\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 2 i te 5, ka 3.
e\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
e\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
e\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tāpirihia te 3 ki te 2, ka 5.
e\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
e\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 3 i te 10, ka 7.
e\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 2 me 13 ko 26. Me tahuri \frac{1}{2} me \frac{1}{13} ki te hautau me te tautūnga 26.
e\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{13}{26} me \frac{2}{26}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 2 i te 13, ka 11.
e\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Me whakarea te \frac{7}{12} ki te \frac{11}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Mahia ngā whakarea i roto i te hautanga \frac{7\times 11}{12\times 26}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Whakawehe \frac{3}{4} ki te \frac{9}{2} mā te whakarea \frac{3}{4} ki te tau huripoki o \frac{9}{2}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Me whakarea te \frac{3}{4} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Mahia ngā whakarea i roto i te hautanga \frac{3\times 2}{4\times 9}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Whakahekea te hautanga \frac{6}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Ko te maha noa iti rawa atu o 312 me 6 ko 312. Me tahuri \frac{77}{312} me \frac{1}{6} ki te hautau me te tautūnga 312.
e\times \frac{3}{5}\times \frac{77+52}{312}
Tā te mea he rite te tauraro o \frac{77}{312} me \frac{52}{312}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
e\times \frac{3}{5}\times \frac{129}{312}
Tāpirihia te 77 ki te 52, ka 129.
e\times \frac{3}{5}\times \frac{43}{104}
Whakahekea te hautanga \frac{129}{312} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
e\times \frac{3\times 43}{5\times 104}
Me whakarea te \frac{3}{5} ki te \frac{43}{104} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{129}{520}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 43}{5\times 104}.
e\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
e\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 2 i te 5, ka 3.
e\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
e\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
e\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tāpirihia te 3 ki te 2, ka 5.
e\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
e\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 3 i te 10, ka 7.
e\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Ko te maha noa iti rawa atu o 2 me 13 ko 26. Me tahuri \frac{1}{2} me \frac{1}{13} ki te hautau me te tautūnga 26.
e\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tā te mea he rite te tauraro o \frac{13}{26} me \frac{2}{26}, me tango rāua mā te tango i ō raua taurunga.
e\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Tangohia te 2 i te 13, ka 11.
e\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Me whakarea te \frac{7}{12} ki te \frac{11}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Mahia ngā whakarea i roto i te hautanga \frac{7\times 11}{12\times 26}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Whakawehe \frac{3}{4} ki te \frac{9}{2} mā te whakarea \frac{3}{4} ki te tau huripoki o \frac{9}{2}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Me whakarea te \frac{3}{4} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Mahia ngā whakarea i roto i te hautanga \frac{3\times 2}{4\times 9}.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Whakahekea te hautanga \frac{6}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
e\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Ko te maha noa iti rawa atu o 312 me 6 ko 312. Me tahuri \frac{77}{312} me \frac{1}{6} ki te hautau me te tautūnga 312.
e\times \frac{3}{5}\times \frac{77+52}{312}
Tā te mea he rite te tauraro o \frac{77}{312} me \frac{52}{312}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
e\times \frac{3}{5}\times \frac{129}{312}
Tāpirihia te 77 ki te 52, ka 129.
e\times \frac{3}{5}\times \frac{43}{104}
Whakahekea te hautanga \frac{129}{312} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
e\times \frac{3\times 43}{5\times 104}
Me whakarea te \frac{3}{5} ki te \frac{43}{104} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
e\times \frac{129}{520}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 43}{5\times 104}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}