Whakaoti mō b
b=-q+\ln(28)
Whakaoti mō q
q=-b+\ln(28)
Pātaitai
Algebra
e ^ { b + q } + 2 = 30
Tohaina
Kua tāruatia ki te papatopenga
e^{b+q}+2=30
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
e^{b+q}=28
Me tango 2 mai i ngā taha e rua o te whārite.
\log(e^{b+q})=\log(28)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(b+q\right)\log(e)=\log(28)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
b+q=\frac{\log(28)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
b+q=\log_{e}\left(28\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=\ln(28)-q
Me tango q mai i ngā taha e rua o te whārite.
e^{q+b}+2=30
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
e^{q+b}=28
Me tango 2 mai i ngā taha e rua o te whārite.
\log(e^{q+b})=\log(28)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(q+b\right)\log(e)=\log(28)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
q+b=\frac{\log(28)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
q+b=\log_{e}\left(28\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
q=\ln(28)-b
Me tango b mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}