Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

e^{b+q}+2=30
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
e^{b+q}=28
Me tango 2 mai i ngā taha e rua o te whārite.
\log(e^{b+q})=\log(28)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(b+q\right)\log(e)=\log(28)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
b+q=\frac{\log(28)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
b+q=\log_{e}\left(28\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=\ln(28)-q
Me tango q mai i ngā taha e rua o te whārite.
e^{q+b}+2=30
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
e^{q+b}=28
Me tango 2 mai i ngā taha e rua o te whārite.
\log(e^{q+b})=\log(28)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(q+b\right)\log(e)=\log(28)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
q+b=\frac{\log(28)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
q+b=\log_{e}\left(28\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
q=\ln(28)-b
Me tango b mai i ngā taha e rua o te whārite.