Whakaoti mō m
m=\frac{\ln(33)-6}{3}\approx -0.83449748
Whakaoti mō m (complex solution)
m=\frac{i\times 2\pi n_{1}}{3}+\frac{\ln(33)-6}{3}
n_{1}\in \mathrm{Z}
Tohaina
Kua tāruatia ki te papatopenga
e^{3m+6}=33
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(e^{3m+6})=\log(33)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(3m+6\right)\log(e)=\log(33)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
3m+6=\frac{\log(33)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
3m+6=\log_{e}\left(33\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
3m=\ln(33)-6
Me tango 6 mai i ngā taha e rua o te whārite.
m=\frac{\ln(33)-6}{3}
Whakawehea ngā taha e rua ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}