d h = ( 1.5 t + 6 ) d t
Whakaoti mō d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&h=t\left(\frac{3t}{2}+6\right)\end{matrix}\right.
Whakaoti mō h
\left\{\begin{matrix}\\h=t\left(\frac{3t}{2}+6\right)\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
dh=\left(1.5td+6d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 1.5t+6 ki te d.
dh=1.5dt^{2}+6dt
Whakamahia te āhuatanga tohatoha hei whakarea te 1.5td+6d ki te t.
dh-1.5dt^{2}=6dt
Tangohia te 1.5dt^{2} mai i ngā taha e rua.
dh-1.5dt^{2}-6dt=0
Tangohia te 6dt mai i ngā taha e rua.
\left(h-1.5t^{2}-6t\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(-\frac{3t^{2}}{2}+h-6t\right)d=0
He hanga arowhānui tō te whārite.
d=0
Whakawehe 0 ki te -1.5t^{2}-6t+h.
dh=\left(1.5td+6d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 1.5t+6 ki te d.
dh=1.5dt^{2}+6dt
Whakamahia te āhuatanga tohatoha hei whakarea te 1.5td+6d ki te t.
dh=\frac{3dt^{2}}{2}+6dt
He hanga arowhānui tō te whārite.
\frac{dh}{d}=\frac{dt\left(\frac{3t}{2}+6\right)}{d}
Whakawehea ngā taha e rua ki te d.
h=\frac{dt\left(\frac{3t}{2}+6\right)}{d}
Mā te whakawehe ki te d ka wetekia te whakareanga ki te d.
h=\frac{3t\left(t+4\right)}{2}
Whakawehe dt\left(6+\frac{3t}{2}\right) ki te d.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}