Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-18 ab=45
Hei whakaoti i te whārite, whakatauwehea te d^{2}-18d+45 mā te whakamahi i te tātai d^{2}+\left(a+b\right)d+ab=\left(d+a\right)\left(d+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-45 -3,-15 -5,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
-1-45=-46 -3-15=-18 -5-9=-14
Tātaihia te tapeke mō ia takirua.
a=-15 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -18.
\left(d-15\right)\left(d-3\right)
Me tuhi anō te kīanga whakatauwehe \left(d+a\right)\left(d+b\right) mā ngā uara i tātaihia.
d=15 d=3
Hei kimi otinga whārite, me whakaoti te d-15=0 me te d-3=0.
a+b=-18 ab=1\times 45=45
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei d^{2}+ad+bd+45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-45 -3,-15 -5,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
-1-45=-46 -3-15=-18 -5-9=-14
Tātaihia te tapeke mō ia takirua.
a=-15 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -18.
\left(d^{2}-15d\right)+\left(-3d+45\right)
Tuhia anō te d^{2}-18d+45 hei \left(d^{2}-15d\right)+\left(-3d+45\right).
d\left(d-15\right)-3\left(d-15\right)
Tauwehea te d i te tuatahi me te -3 i te rōpū tuarua.
\left(d-15\right)\left(d-3\right)
Whakatauwehea atu te kīanga pātahi d-15 mā te whakamahi i te āhuatanga tātai tohatoha.
d=15 d=3
Hei kimi otinga whārite, me whakaoti te d-15=0 me te d-3=0.
d^{2}-18d+45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 45}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -18 mō b, me 45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-18\right)±\sqrt{324-4\times 45}}{2}
Pūrua -18.
d=\frac{-\left(-18\right)±\sqrt{324-180}}{2}
Whakareatia -4 ki te 45.
d=\frac{-\left(-18\right)±\sqrt{144}}{2}
Tāpiri 324 ki te -180.
d=\frac{-\left(-18\right)±12}{2}
Tuhia te pūtakerua o te 144.
d=\frac{18±12}{2}
Ko te tauaro o -18 ko 18.
d=\frac{30}{2}
Nā, me whakaoti te whārite d=\frac{18±12}{2} ina he tāpiri te ±. Tāpiri 18 ki te 12.
d=15
Whakawehe 30 ki te 2.
d=\frac{6}{2}
Nā, me whakaoti te whārite d=\frac{18±12}{2} ina he tango te ±. Tango 12 mai i 18.
d=3
Whakawehe 6 ki te 2.
d=15 d=3
Kua oti te whārite te whakatau.
d^{2}-18d+45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
d^{2}-18d+45-45=-45
Me tango 45 mai i ngā taha e rua o te whārite.
d^{2}-18d=-45
Mā te tango i te 45 i a ia ake anō ka toe ko te 0.
d^{2}-18d+\left(-9\right)^{2}=-45+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
d^{2}-18d+81=-45+81
Pūrua -9.
d^{2}-18d+81=36
Tāpiri -45 ki te 81.
\left(d-9\right)^{2}=36
Tauwehea d^{2}-18d+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-9\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
d-9=6 d-9=-6
Whakarūnātia.
d=15 d=3
Me tāpiri 9 ki ngā taha e rua o te whārite.