Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

d^{2}-3d=0
Tangohia te 3d mai i ngā taha e rua.
d\left(d-3\right)=0
Tauwehea te d.
d=0 d=3
Hei kimi otinga whārite, me whakaoti te d=0 me te d-3=0.
d^{2}-3d=0
Tangohia te 3d mai i ngā taha e rua.
d=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-3\right)±3}{2}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
d=\frac{3±3}{2}
Ko te tauaro o -3 ko 3.
d=\frac{6}{2}
Nā, me whakaoti te whārite d=\frac{3±3}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3.
d=3
Whakawehe 6 ki te 2.
d=\frac{0}{2}
Nā, me whakaoti te whārite d=\frac{3±3}{2} ina he tango te ±. Tango 3 mai i 3.
d=0
Whakawehe 0 ki te 2.
d=3 d=0
Kua oti te whārite te whakatau.
d^{2}-3d=0
Tangohia te 3d mai i ngā taha e rua.
d^{2}-3d+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
d^{2}-3d+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(d-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea d^{2}-3d+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
d-\frac{3}{2}=\frac{3}{2} d-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
d=3 d=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.