Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=7 ab=10
Hei whakaoti i te whārite, whakatauwehea te d^{2}+7d+10 mā te whakamahi i te tātai d^{2}+\left(a+b\right)d+ab=\left(d+a\right)\left(d+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(d+2\right)\left(d+5\right)
Me tuhi anō te kīanga whakatauwehe \left(d+a\right)\left(d+b\right) mā ngā uara i tātaihia.
d=-2 d=-5
Hei kimi otinga whārite, me whakaoti te d+2=0 me te d+5=0.
a+b=7 ab=1\times 10=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei d^{2}+ad+bd+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(d^{2}+2d\right)+\left(5d+10\right)
Tuhia anō te d^{2}+7d+10 hei \left(d^{2}+2d\right)+\left(5d+10\right).
d\left(d+2\right)+5\left(d+2\right)
Tauwehea te d i te tuatahi me te 5 i te rōpū tuarua.
\left(d+2\right)\left(d+5\right)
Whakatauwehea atu te kīanga pātahi d+2 mā te whakamahi i te āhuatanga tātai tohatoha.
d=-2 d=-5
Hei kimi otinga whārite, me whakaoti te d+2=0 me te d+5=0.
d^{2}+7d+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-7±\sqrt{7^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-7±\sqrt{49-4\times 10}}{2}
Pūrua 7.
d=\frac{-7±\sqrt{49-40}}{2}
Whakareatia -4 ki te 10.
d=\frac{-7±\sqrt{9}}{2}
Tāpiri 49 ki te -40.
d=\frac{-7±3}{2}
Tuhia te pūtakerua o te 9.
d=-\frac{4}{2}
Nā, me whakaoti te whārite d=\frac{-7±3}{2} ina he tāpiri te ±. Tāpiri -7 ki te 3.
d=-2
Whakawehe -4 ki te 2.
d=-\frac{10}{2}
Nā, me whakaoti te whārite d=\frac{-7±3}{2} ina he tango te ±. Tango 3 mai i -7.
d=-5
Whakawehe -10 ki te 2.
d=-2 d=-5
Kua oti te whārite te whakatau.
d^{2}+7d+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
d^{2}+7d+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
d^{2}+7d=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
d^{2}+7d+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
d^{2}+7d+\frac{49}{4}=-10+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
d^{2}+7d+\frac{49}{4}=\frac{9}{4}
Tāpiri -10 ki te \frac{49}{4}.
\left(d+\frac{7}{2}\right)^{2}=\frac{9}{4}
Tauwehea d^{2}+7d+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
d+\frac{7}{2}=\frac{3}{2} d+\frac{7}{2}=-\frac{3}{2}
Whakarūnātia.
d=-2 d=-5
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.