Whakaoti mō d
d=-7
d=1
Tohaina
Kua tāruatia ki te papatopenga
d-\frac{7-6d}{d}=0
Tangohia te \frac{7-6d}{d} mai i ngā taha e rua.
\frac{dd}{d}-\frac{7-6d}{d}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia d ki te \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Tā te mea he rite te tauraro o \frac{dd}{d} me \frac{7-6d}{d}, me tango rāua mā te tango i ō raua taurunga.
\frac{d^{2}-7+6d}{d}=0
Mahia ngā whakarea i roto o dd-\left(7-6d\right).
d^{2}-7+6d=0
Tē taea kia ōrite te tāupe d ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te d.
d^{2}+6d-7=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=-7
Hei whakaoti i te whārite, whakatauwehea te d^{2}+6d-7 mā te whakamahi i te tātai d^{2}+\left(a+b\right)d+ab=\left(d+a\right)\left(d+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(d-1\right)\left(d+7\right)
Me tuhi anō te kīanga whakatauwehe \left(d+a\right)\left(d+b\right) mā ngā uara i tātaihia.
d=1 d=-7
Hei kimi otinga whārite, me whakaoti te d-1=0 me te d+7=0.
d-\frac{7-6d}{d}=0
Tangohia te \frac{7-6d}{d} mai i ngā taha e rua.
\frac{dd}{d}-\frac{7-6d}{d}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia d ki te \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Tā te mea he rite te tauraro o \frac{dd}{d} me \frac{7-6d}{d}, me tango rāua mā te tango i ō raua taurunga.
\frac{d^{2}-7+6d}{d}=0
Mahia ngā whakarea i roto o dd-\left(7-6d\right).
d^{2}-7+6d=0
Tē taea kia ōrite te tāupe d ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te d.
d^{2}+6d-7=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=1\left(-7\right)=-7
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei d^{2}+ad+bd-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(d^{2}-d\right)+\left(7d-7\right)
Tuhia anō te d^{2}+6d-7 hei \left(d^{2}-d\right)+\left(7d-7\right).
d\left(d-1\right)+7\left(d-1\right)
Tauwehea te d i te tuatahi me te 7 i te rōpū tuarua.
\left(d-1\right)\left(d+7\right)
Whakatauwehea atu te kīanga pātahi d-1 mā te whakamahi i te āhuatanga tātai tohatoha.
d=1 d=-7
Hei kimi otinga whārite, me whakaoti te d-1=0 me te d+7=0.
d-\frac{7-6d}{d}=0
Tangohia te \frac{7-6d}{d} mai i ngā taha e rua.
\frac{dd}{d}-\frac{7-6d}{d}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia d ki te \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Tā te mea he rite te tauraro o \frac{dd}{d} me \frac{7-6d}{d}, me tango rāua mā te tango i ō raua taurunga.
\frac{d^{2}-7+6d}{d}=0
Mahia ngā whakarea i roto o dd-\left(7-6d\right).
d^{2}-7+6d=0
Tē taea kia ōrite te tāupe d ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te d.
d^{2}+6d-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Pūrua 6.
d=\frac{-6±\sqrt{36+28}}{2}
Whakareatia -4 ki te -7.
d=\frac{-6±\sqrt{64}}{2}
Tāpiri 36 ki te 28.
d=\frac{-6±8}{2}
Tuhia te pūtakerua o te 64.
d=\frac{2}{2}
Nā, me whakaoti te whārite d=\frac{-6±8}{2} ina he tāpiri te ±. Tāpiri -6 ki te 8.
d=1
Whakawehe 2 ki te 2.
d=-\frac{14}{2}
Nā, me whakaoti te whārite d=\frac{-6±8}{2} ina he tango te ±. Tango 8 mai i -6.
d=-7
Whakawehe -14 ki te 2.
d=1 d=-7
Kua oti te whārite te whakatau.
d-\frac{7-6d}{d}=0
Tangohia te \frac{7-6d}{d} mai i ngā taha e rua.
\frac{dd}{d}-\frac{7-6d}{d}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia d ki te \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Tā te mea he rite te tauraro o \frac{dd}{d} me \frac{7-6d}{d}, me tango rāua mā te tango i ō raua taurunga.
\frac{d^{2}-7+6d}{d}=0
Mahia ngā whakarea i roto o dd-\left(7-6d\right).
d^{2}-7+6d=0
Tē taea kia ōrite te tāupe d ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te d.
d^{2}+6d=7
Me tāpiri te 7 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
d^{2}+6d+3^{2}=7+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
d^{2}+6d+9=7+9
Pūrua 3.
d^{2}+6d+9=16
Tāpiri 7 ki te 9.
\left(d+3\right)^{2}=16
Tauwehea d^{2}+6d+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+3\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
d+3=4 d+3=-4
Whakarūnātia.
d=1 d=-7
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}