Whakaoti mō d
d = \frac{6750}{49} = 137\frac{37}{49} \approx 137.755102041
Tautapa d
d≔\frac{6750}{49}
Tohaina
Kua tāruatia ki te papatopenga
d=\frac{27}{490}\times 2500
Tātaihia te 50 mā te pū o 2, kia riro ko 2500.
d=\frac{27\times 2500}{490}
Tuhia te \frac{27}{490}\times 2500 hei hautanga kotahi.
d=\frac{67500}{490}
Whakareatia te 27 ki te 2500, ka 67500.
d=\frac{6750}{49}
Whakahekea te hautanga \frac{67500}{490} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}