Whakaoti mō c
c\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
c^{2}-c+\frac{3}{2}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times \frac{3}{2}}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te \frac{3}{2} mō te c i te ture pūrua.
c=\frac{1±\sqrt{-5}}{2}
Mahia ngā tātaitai.
0^{2}-0+\frac{3}{2}=\frac{3}{2}
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā. He rite te tohu o te kīanga c^{2}-c+\frac{3}{2} ki tā tētahi c. Kia whakatau i te tohu, tātaitia te uara o te kīanga mō c=0.
c\in \mathrm{R}
Ko te uara o te kīanga c^{2}-c+\frac{3}{2} he tōrunga i ngā wā katoa. E mau ana te koreōrite mō c\in \mathrm{R}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}