Whakaoti mō c
c=\sqrt{15}-2\approx 1.872983346
c=-\sqrt{15}-2\approx -5.872983346
Tohaina
Kua tāruatia ki te papatopenga
c^{2}+4c-17=-6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
c^{2}+4c-17-\left(-6\right)=0
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
c^{2}+4c-11=0
Tango -6 mai i -17.
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
Pūrua 4.
c=\frac{-4±\sqrt{16+44}}{2}
Whakareatia -4 ki te -11.
c=\frac{-4±\sqrt{60}}{2}
Tāpiri 16 ki te 44.
c=\frac{-4±2\sqrt{15}}{2}
Tuhia te pūtakerua o te 60.
c=\frac{2\sqrt{15}-4}{2}
Nā, me whakaoti te whārite c=\frac{-4±2\sqrt{15}}{2} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{15}.
c=\sqrt{15}-2
Whakawehe -4+2\sqrt{15} ki te 2.
c=\frac{-2\sqrt{15}-4}{2}
Nā, me whakaoti te whārite c=\frac{-4±2\sqrt{15}}{2} ina he tango te ±. Tango 2\sqrt{15} mai i -4.
c=-\sqrt{15}-2
Whakawehe -4-2\sqrt{15} ki te 2.
c=\sqrt{15}-2 c=-\sqrt{15}-2
Kua oti te whārite te whakatau.
c^{2}+4c-17=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
Me tāpiri 17 ki ngā taha e rua o te whārite.
c^{2}+4c=-6-\left(-17\right)
Mā te tango i te -17 i a ia ake anō ka toe ko te 0.
c^{2}+4c=11
Tango -17 mai i -6.
c^{2}+4c+2^{2}=11+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
c^{2}+4c+4=11+4
Pūrua 2.
c^{2}+4c+4=15
Tāpiri 11 ki te 4.
\left(c+2\right)^{2}=15
Tauwehea c^{2}+4c+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c+2=\sqrt{15} c+2=-\sqrt{15}
Whakarūnātia.
c=\sqrt{15}-2 c=-\sqrt{15}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}