Whakaoti mō b
b=4+\sqrt{11}i\approx 4+3.31662479i
b=-\sqrt{11}i+4\approx 4-3.31662479i
Tohaina
Kua tāruatia ki te papatopenga
b^{2}-8b+27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 27}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-8\right)±\sqrt{64-4\times 27}}{2}
Pūrua -8.
b=\frac{-\left(-8\right)±\sqrt{64-108}}{2}
Whakareatia -4 ki te 27.
b=\frac{-\left(-8\right)±\sqrt{-44}}{2}
Tāpiri 64 ki te -108.
b=\frac{-\left(-8\right)±2\sqrt{11}i}{2}
Tuhia te pūtakerua o te -44.
b=\frac{8±2\sqrt{11}i}{2}
Ko te tauaro o -8 ko 8.
b=\frac{8+2\sqrt{11}i}{2}
Nā, me whakaoti te whārite b=\frac{8±2\sqrt{11}i}{2} ina he tāpiri te ±. Tāpiri 8 ki te 2i\sqrt{11}.
b=4+\sqrt{11}i
Whakawehe 8+2i\sqrt{11} ki te 2.
b=\frac{-2\sqrt{11}i+8}{2}
Nā, me whakaoti te whārite b=\frac{8±2\sqrt{11}i}{2} ina he tango te ±. Tango 2i\sqrt{11} mai i 8.
b=-\sqrt{11}i+4
Whakawehe 8-2i\sqrt{11} ki te 2.
b=4+\sqrt{11}i b=-\sqrt{11}i+4
Kua oti te whārite te whakatau.
b^{2}-8b+27=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
b^{2}-8b+27-27=-27
Me tango 27 mai i ngā taha e rua o te whārite.
b^{2}-8b=-27
Mā te tango i te 27 i a ia ake anō ka toe ko te 0.
b^{2}-8b+\left(-4\right)^{2}=-27+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-8b+16=-27+16
Pūrua -4.
b^{2}-8b+16=-11
Tāpiri -27 ki te 16.
\left(b-4\right)^{2}=-11
Tauwehea b^{2}-8b+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-4\right)^{2}}=\sqrt{-11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-4=\sqrt{11}i b-4=-\sqrt{11}i
Whakarūnātia.
b=4+\sqrt{11}i b=-\sqrt{11}i+4
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}