Tauwehe
\left(b-3\right)^{2}
Aromātai
\left(b-3\right)^{2}
Pātaitai
Polynomial
b ^ { 2 } - 6 b + 9
Tohaina
Kua tāruatia ki te papatopenga
p+q=-6 pq=1\times 9=9
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei b^{2}+pb+qb+9. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-9 -3,-3
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
-1-9=-10 -3-3=-6
Tātaihia te tapeke mō ia takirua.
p=-3 q=-3
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(b^{2}-3b\right)+\left(-3b+9\right)
Tuhia anō te b^{2}-6b+9 hei \left(b^{2}-3b\right)+\left(-3b+9\right).
b\left(b-3\right)-3\left(b-3\right)
Tauwehea te b i te tuatahi me te -3 i te rōpū tuarua.
\left(b-3\right)\left(b-3\right)
Whakatauwehea atu te kīanga pātahi b-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(b-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(b^{2}-6b+9)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
\sqrt{9}=3
Kimihia te pūtakerua o te kīanga tau autō, 9.
\left(b-3\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
b^{2}-6b+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Pūrua -6.
b=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Whakareatia -4 ki te 9.
b=\frac{-\left(-6\right)±\sqrt{0}}{2}
Tāpiri 36 ki te -36.
b=\frac{-\left(-6\right)±0}{2}
Tuhia te pūtakerua o te 0.
b=\frac{6±0}{2}
Ko te tauaro o -6 ko 6.
b^{2}-6b+9=\left(b-3\right)\left(b-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 3 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}