Whakaoti mō b
b=-2
b=18
Tohaina
Kua tāruatia ki te papatopenga
b^{2}-16b-36=0
Tangohia te 36 mai i ngā taha e rua.
a+b=-16 ab=-36
Hei whakaoti i te whārite, whakatauwehea te b^{2}-16b-36 mā te whakamahi i te tātai b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-18 b=2
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(b-18\right)\left(b+2\right)
Me tuhi anō te kīanga whakatauwehe \left(b+a\right)\left(b+b\right) mā ngā uara i tātaihia.
b=18 b=-2
Hei kimi otinga whārite, me whakaoti te b-18=0 me te b+2=0.
b^{2}-16b-36=0
Tangohia te 36 mai i ngā taha e rua.
a+b=-16 ab=1\left(-36\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei b^{2}+ab+bb-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-18 b=2
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(b^{2}-18b\right)+\left(2b-36\right)
Tuhia anō te b^{2}-16b-36 hei \left(b^{2}-18b\right)+\left(2b-36\right).
b\left(b-18\right)+2\left(b-18\right)
Tauwehea te b i te tuatahi me te 2 i te rōpū tuarua.
\left(b-18\right)\left(b+2\right)
Whakatauwehea atu te kīanga pātahi b-18 mā te whakamahi i te āhuatanga tātai tohatoha.
b=18 b=-2
Hei kimi otinga whārite, me whakaoti te b-18=0 me te b+2=0.
b^{2}-16b=36
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b^{2}-16b-36=36-36
Me tango 36 mai i ngā taha e rua o te whārite.
b^{2}-16b-36=0
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
b=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -16 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-16\right)±\sqrt{256-4\left(-36\right)}}{2}
Pūrua -16.
b=\frac{-\left(-16\right)±\sqrt{256+144}}{2}
Whakareatia -4 ki te -36.
b=\frac{-\left(-16\right)±\sqrt{400}}{2}
Tāpiri 256 ki te 144.
b=\frac{-\left(-16\right)±20}{2}
Tuhia te pūtakerua o te 400.
b=\frac{16±20}{2}
Ko te tauaro o -16 ko 16.
b=\frac{36}{2}
Nā, me whakaoti te whārite b=\frac{16±20}{2} ina he tāpiri te ±. Tāpiri 16 ki te 20.
b=18
Whakawehe 36 ki te 2.
b=-\frac{4}{2}
Nā, me whakaoti te whārite b=\frac{16±20}{2} ina he tango te ±. Tango 20 mai i 16.
b=-2
Whakawehe -4 ki te 2.
b=18 b=-2
Kua oti te whārite te whakatau.
b^{2}-16b=36
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
b^{2}-16b+\left(-8\right)^{2}=36+\left(-8\right)^{2}
Whakawehea te -16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -8. Nā, tāpiria te pūrua o te -8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-16b+64=36+64
Pūrua -8.
b^{2}-16b+64=100
Tāpiri 36 ki te 64.
\left(b-8\right)^{2}=100
Tauwehea b^{2}-16b+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-8\right)^{2}}=\sqrt{100}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-8=10 b-8=-10
Whakarūnātia.
b=18 b=-2
Me tāpiri 8 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}