Whakaoti mō x
x=-\frac{b^{2}}{10}+5
Whakaoti mō b (complex solution)
b=-\sqrt{50-10x}
b=\sqrt{50-10x}
Whakaoti mō b
b=\sqrt{50-10x}
b=-\sqrt{50-10x}\text{, }x\leq 5
Graph
Tohaina
Kua tāruatia ki te papatopenga
b^{2}-\left(25-10x+x^{2}\right)=5^{2}-x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-x\right)^{2}.
b^{2}-25+10x-x^{2}=5^{2}-x^{2}
Hei kimi i te tauaro o 25-10x+x^{2}, kimihia te tauaro o ia taurangi.
b^{2}-25+10x-x^{2}=25-x^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
b^{2}-25+10x-x^{2}+x^{2}=25
Me tāpiri te x^{2} ki ngā taha e rua.
b^{2}-25+10x=25
Pahekotia te -x^{2} me x^{2}, ka 0.
-25+10x=25-b^{2}
Tangohia te b^{2} mai i ngā taha e rua.
10x=25-b^{2}+25
Me tāpiri te 25 ki ngā taha e rua.
10x=50-b^{2}
Tāpirihia te 25 ki te 25, ka 50.
\frac{10x}{10}=\frac{50-b^{2}}{10}
Whakawehea ngā taha e rua ki te 10.
x=\frac{50-b^{2}}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x=-\frac{b^{2}}{10}+5
Whakawehe 50-b^{2} ki te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}