Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō b
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

b^{2}x-b^{2}-b\left(x+5\right)-6\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te b^{2} ki te x-1.
b^{2}x-b^{2}-\left(bx+5b\right)-6\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x+5.
b^{2}x-b^{2}-bx-5b-6\left(x+1\right)=0
Hei kimi i te tauaro o bx+5b, kimihia te tauaro o ia taurangi.
b^{2}x-b^{2}-bx-5b-6x-6=0
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x+1.
b^{2}x-bx-5b-6x-6=b^{2}
Me tāpiri te b^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
b^{2}x-bx-6x-6=b^{2}+5b
Me tāpiri te 5b ki ngā taha e rua.
b^{2}x-bx-6x=b^{2}+5b+6
Me tāpiri te 6 ki ngā taha e rua.
\left(b^{2}-b-6\right)x=b^{2}+5b+6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(b^{2}-b-6\right)x}{b^{2}-b-6}=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Whakawehea ngā taha e rua ki te b^{2}-b-6.
x=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Mā te whakawehe ki te b^{2}-b-6 ka wetekia te whakareanga ki te b^{2}-b-6.
x=\frac{b+3}{b-3}
Whakawehe \left(2+b\right)\left(3+b\right) ki te b^{2}-b-6.
b^{2}x-b^{2}-b\left(x+5\right)-6\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te b^{2} ki te x-1.
b^{2}x-b^{2}-\left(bx+5b\right)-6\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x+5.
b^{2}x-b^{2}-bx-5b-6\left(x+1\right)=0
Hei kimi i te tauaro o bx+5b, kimihia te tauaro o ia taurangi.
b^{2}x-b^{2}-bx-5b-6x-6=0
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x+1.
b^{2}x-bx-5b-6x-6=b^{2}
Me tāpiri te b^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
b^{2}x-bx-6x-6=b^{2}+5b
Me tāpiri te 5b ki ngā taha e rua.
b^{2}x-bx-6x=b^{2}+5b+6
Me tāpiri te 6 ki ngā taha e rua.
\left(b^{2}-b-6\right)x=b^{2}+5b+6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(b^{2}-b-6\right)x}{b^{2}-b-6}=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Whakawehea ngā taha e rua ki te b^{2}-b-6.
x=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Mā te whakawehe ki te b^{2}-b-6 ka wetekia te whakareanga ki te b^{2}-b-6.
x=\frac{b+3}{b-3}
Whakawehe \left(2+b\right)\left(3+b\right) ki te b^{2}-b-6.