Aromātai
b
Kimi Pārōnaki e ai ki b
1
Pātaitai
Polynomial
b ^ { 2 } \div b
Tohaina
Kua tāruatia ki te papatopenga
\frac{b^{2}}{b^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
b^{2-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
b^{1}
Tango 1 mai i 2.
b
Mō tētahi kupu t, t^{1}=t.
b^{2}\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{b})+\frac{1}{b}\frac{\mathrm{d}}{\mathrm{d}b}(b^{2})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
b^{2}\left(-1\right)b^{-1-1}+\frac{1}{b}\times 2b^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
b^{2}\left(-1\right)b^{-2}+\frac{1}{b}\times 2b^{1}
Whakarūnātia.
-b^{2-2}+2b^{-1+1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
-b^{0}+2b^{0}
Whakarūnātia.
-1+2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-1+2
Mō tētahi kupu t, t\times 1=t me 1t=t.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{1}b^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{1})
Mahia ngā tātaitanga.
b^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
b^{0}
Mahia ngā tātaitanga.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}