Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

b^{2}=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
b=6i b=-6i
Kua oti te whārite te whakatau.
b^{2}+36=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 36}}{2}
Pūrua 0.
b=\frac{0±\sqrt{-144}}{2}
Whakareatia -4 ki te 36.
b=\frac{0±12i}{2}
Tuhia te pūtakerua o te -144.
b=6i
Nā, me whakaoti te whārite b=\frac{0±12i}{2} ina he tāpiri te ±.
b=-6i
Nā, me whakaoti te whārite b=\frac{0±12i}{2} ina he tango te ±.
b=6i b=-6i
Kua oti te whārite te whakatau.