Tauwehe
\left(b-1\right)\left(b+4\right)
Aromātai
\left(b-1\right)\left(b+4\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=3 pq=1\left(-4\right)=-4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei b^{2}+pb+qb-4. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
p=-1 q=4
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(b^{2}-b\right)+\left(4b-4\right)
Tuhia anō te b^{2}+3b-4 hei \left(b^{2}-b\right)+\left(4b-4\right).
b\left(b-1\right)+4\left(b-1\right)
Tauwehea te b i te tuatahi me te 4 i te rōpū tuarua.
\left(b-1\right)\left(b+4\right)
Whakatauwehea atu te kīanga pātahi b-1 mā te whakamahi i te āhuatanga tātai tohatoha.
b^{2}+3b-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Pūrua 3.
b=\frac{-3±\sqrt{9+16}}{2}
Whakareatia -4 ki te -4.
b=\frac{-3±\sqrt{25}}{2}
Tāpiri 9 ki te 16.
b=\frac{-3±5}{2}
Tuhia te pūtakerua o te 25.
b=\frac{2}{2}
Nā, me whakaoti te whārite b=\frac{-3±5}{2} ina he tāpiri te ±. Tāpiri -3 ki te 5.
b=1
Whakawehe 2 ki te 2.
b=-\frac{8}{2}
Nā, me whakaoti te whārite b=\frac{-3±5}{2} ina he tango te ±. Tango 5 mai i -3.
b=-4
Whakawehe -8 ki te 2.
b^{2}+3b-4=\left(b-1\right)\left(b-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -4 mō te x_{2}.
b^{2}+3b-4=\left(b-1\right)\left(b+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}