Whakaoti mō b
b=6+2\sqrt{6}i\approx 6+4.898979486i
b=-2\sqrt{6}i+6\approx 6-4.898979486i
Tohaina
Kua tāruatia ki te papatopenga
b^{2}+60-12b=0
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 5-b.
b^{2}-12b+60=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 60}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 60}}{2}
Pūrua -12.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2}
Whakareatia -4 ki te 60.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2}
Tāpiri 144 ki te -240.
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2}
Tuhia te pūtakerua o te -96.
b=\frac{12±4\sqrt{6}i}{2}
Ko te tauaro o -12 ko 12.
b=\frac{12+4\sqrt{6}i}{2}
Nā, me whakaoti te whārite b=\frac{12±4\sqrt{6}i}{2} ina he tāpiri te ±. Tāpiri 12 ki te 4i\sqrt{6}.
b=6+2\sqrt{6}i
Whakawehe 12+4i\sqrt{6} ki te 2.
b=\frac{-4\sqrt{6}i+12}{2}
Nā, me whakaoti te whārite b=\frac{12±4\sqrt{6}i}{2} ina he tango te ±. Tango 4i\sqrt{6} mai i 12.
b=-2\sqrt{6}i+6
Whakawehe 12-4i\sqrt{6} ki te 2.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
Kua oti te whārite te whakatau.
b^{2}+60-12b=0
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 5-b.
b^{2}-12b=-60
Tangohia te 60 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
b^{2}-12b+\left(-6\right)^{2}=-60+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-12b+36=-60+36
Pūrua -6.
b^{2}-12b+36=-24
Tāpiri -60 ki te 36.
\left(b-6\right)^{2}=-24
Tauwehea b^{2}-12b+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-6\right)^{2}}=\sqrt{-24}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-6=2\sqrt{6}i b-6=-2\sqrt{6}i
Whakarūnātia.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}