b + 3 a - 6 = ( a b - 2 b ) + ( 3 a - 6
Whakaoti mō a
\left\{\begin{matrix}\\a=3\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=3\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
b+3a-6-ab=-2b+3a-6
Tangohia te ab mai i ngā taha e rua.
b+3a-6-ab-3a=-2b-6
Tangohia te 3a mai i ngā taha e rua.
b-6-ab=-2b-6
Pahekotia te 3a me -3a, ka 0.
-6-ab=-2b-6-b
Tangohia te b mai i ngā taha e rua.
-6-ab=-3b-6
Pahekotia te -2b me -b, ka -3b.
-ab=-3b-6+6
Me tāpiri te 6 ki ngā taha e rua.
-ab=-3b
Tāpirihia te -6 ki te 6, ka 0.
\left(-b\right)a=-3b
He hanga arowhānui tō te whārite.
\frac{\left(-b\right)a}{-b}=-\frac{3b}{-b}
Whakawehea ngā taha e rua ki te -b.
a=-\frac{3b}{-b}
Mā te whakawehe ki te -b ka wetekia te whakareanga ki te -b.
a=3
Whakawehe -3b ki te -b.
b+3a-6-ab=-2b+3a-6
Tangohia te ab mai i ngā taha e rua.
b+3a-6-ab+2b=3a-6
Me tāpiri te 2b ki ngā taha e rua.
3b+3a-6-ab=3a-6
Pahekotia te b me 2b, ka 3b.
3b-6-ab=3a-6-3a
Tangohia te 3a mai i ngā taha e rua.
3b-6-ab=-6
Pahekotia te 3a me -3a, ka 0.
3b-ab=-6+6
Me tāpiri te 6 ki ngā taha e rua.
3b-ab=0
Tāpirihia te -6 ki te 6, ka 0.
\left(3-a\right)b=0
Pahekotia ngā kīanga tau katoa e whai ana i te b.
b=0
Whakawehe 0 ki te 3-a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}