Whakaoti mō a
a=x
Whakaoti mō x
x=a
Graph
Tohaina
Kua tāruatia ki te papatopenga
a-x=3x-3a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-a.
a-x+3a=3x
Me tāpiri te 3a ki ngā taha e rua.
4a-x=3x
Pahekotia te a me 3a, ka 4a.
4a=3x+x
Me tāpiri te x ki ngā taha e rua.
4a=4x
Pahekotia te 3x me x, ka 4x.
a=x
Me whakakore te 4 ki ngā taha e rua.
a-x=3x-3a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-a.
a-x-3x=-3a
Tangohia te 3x mai i ngā taha e rua.
a-4x=-3a
Pahekotia te -x me -3x, ka -4x.
-4x=-3a-a
Tangohia te a mai i ngā taha e rua.
-4x=-4a
Pahekotia te -3a me -a, ka -4a.
x=a
Me whakakore te -4 ki ngā taha e rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}