Whakaoti mō a
a=9
Tohaina
Kua tāruatia ki te papatopenga
-\sqrt{a}=6-a
Me tango a mai i ngā taha e rua o te whārite.
\left(-\sqrt{a}\right)^{2}=\left(6-a\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-1\right)^{2}\left(\sqrt{a}\right)^{2}=\left(6-a\right)^{2}
Whakarohaina te \left(-\sqrt{a}\right)^{2}.
1\left(\sqrt{a}\right)^{2}=\left(6-a\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
1a=\left(6-a\right)^{2}
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
1a=36-12a+a^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-a\right)^{2}.
a=a^{2}-12a+36
Whakaraupapatia anō ngā kīanga tau.
a-a^{2}=-12a+36
Tangohia te a^{2} mai i ngā taha e rua.
a-a^{2}+12a=36
Me tāpiri te 12a ki ngā taha e rua.
13a-a^{2}=36
Pahekotia te a me 12a, ka 13a.
13a-a^{2}-36=0
Tangohia te 36 mai i ngā taha e rua.
-a^{2}+13a-36=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=13 ab=-\left(-36\right)=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -a^{2}+aa+ba-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=9 b=4
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-a^{2}+9a\right)+\left(4a-36\right)
Tuhia anō te -a^{2}+13a-36 hei \left(-a^{2}+9a\right)+\left(4a-36\right).
-a\left(a-9\right)+4\left(a-9\right)
Tauwehea te -a i te tuatahi me te 4 i te rōpū tuarua.
\left(a-9\right)\left(-a+4\right)
Whakatauwehea atu te kīanga pātahi a-9 mā te whakamahi i te āhuatanga tātai tohatoha.
a=9 a=4
Hei kimi otinga whārite, me whakaoti te a-9=0 me te -a+4=0.
9-\sqrt{9}=6
Whakakapia te 9 mō te a i te whārite a-\sqrt{a}=6.
6=6
Whakarūnātia. Ko te uara a=9 kua ngata te whārite.
4-\sqrt{4}=6
Whakakapia te 4 mō te a i te whārite a-\sqrt{a}=6.
2=6
Whakarūnātia. Ko te uara a=4 kāore e ngata ana ki te whārite.
a=9
Ko te whārite -\sqrt{a}=6-a he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}