Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=-\frac{a}{3-c}\text{, }&c\neq 3\\b\in \mathrm{C}\text{, }&a=0\text{ and }c=3\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=-\frac{a}{3-c}\text{, }&c\neq 3\\b\in \mathrm{R}\text{, }&a=0\text{ and }c=3\end{matrix}\right.
Whakaoti mō a
a=b\left(c-3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+3b-bc=0
Tangohia te bc mai i ngā taha e rua.
3b-bc=-a
Tangohia te a mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(3-c\right)b=-a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(3-c\right)b}{3-c}=-\frac{a}{3-c}
Whakawehea ngā taha e rua ki te 3-c.
b=-\frac{a}{3-c}
Mā te whakawehe ki te 3-c ka wetekia te whakareanga ki te 3-c.
a+3b-bc=0
Tangohia te bc mai i ngā taha e rua.
3b-bc=-a
Tangohia te a mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(3-c\right)b=-a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(3-c\right)b}{3-c}=-\frac{a}{3-c}
Whakawehea ngā taha e rua ki te 3-c.
b=-\frac{a}{3-c}
Mā te whakawehe ki te 3-c ka wetekia te whakareanga ki te 3-c.
a=bc-3b
Tangohia te 3b mai i ngā taha e rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}