Whakaoti mō a
a=-\frac{2x+1}{x\left(x+1\right)}
x\neq -1\text{ and }x\neq 0
Whakaoti mō x
\left\{\begin{matrix}x=\frac{\sqrt{a^{2}+4}-a-2}{2a}\text{; }x=-\frac{\sqrt{a^{2}+4}+a+2}{2a}\text{, }&a\neq 0\\x=-\frac{1}{2}\text{, }&a=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax^{2}+ax+2x+1=0
Whakamahia te āhuatanga tohatoha hei whakarea te a+2 ki te x.
ax^{2}+ax+1=-2x
Tangohia te 2x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ax^{2}+ax=-2x-1
Tangohia te 1 mai i ngā taha e rua.
\left(x^{2}+x\right)a=-2x-1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x^{2}+x\right)a}{x^{2}+x}=\frac{-2x-1}{x^{2}+x}
Whakawehea ngā taha e rua ki te x^{2}+x.
a=\frac{-2x-1}{x^{2}+x}
Mā te whakawehe ki te x^{2}+x ka wetekia te whakareanga ki te x^{2}+x.
a=-\frac{2x+1}{x\left(x+1\right)}
Whakawehe -2x-1 ki te x^{2}+x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}