Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

ax+a+1=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ax+a=-2y-1
Tangohia te 1 mai i ngā taha e rua.
\left(x+1\right)a=-2y-1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x+1\right)a}{x+1}=\frac{-2y-1}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{-2y-1}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
a=-\frac{2y+1}{x+1}
Whakawehe -2y-1 ki te x+1.
ax+a+1=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ax+1=-2y-a
Tangohia te a mai i ngā taha e rua.
ax=-2y-a-1
Tangohia te 1 mai i ngā taha e rua.
\frac{ax}{a}=\frac{-2y-a-1}{a}
Whakawehea ngā taha e rua ki te a.
x=\frac{-2y-a-1}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
x=-\frac{2y+a+1}{a}
Whakawehe -2y-a-1 ki te a.
ax+a+1=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ax+a=-2y-1
Tangohia te 1 mai i ngā taha e rua.
\left(x+1\right)a=-2y-1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x+1\right)a}{x+1}=\frac{-2y-1}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{-2y-1}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
a=-\frac{2y+1}{x+1}
Whakawehe -2y-1 ki te x+1.
ax+a+1=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ax+1=-2y-a
Tangohia te a mai i ngā taha e rua.
ax=-2y-a-1
Tangohia te 1 mai i ngā taha e rua.
\frac{ax}{a}=\frac{-2y-a-1}{a}
Whakawehea ngā taha e rua ki te a.
x=\frac{-2y-a-1}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
x=-\frac{2y+a+1}{a}
Whakawehe -2y-a-1 ki te a.