Whakaoti mō a_n (complex solution)
a_{n}=-\frac{4\left(-5\right)^{n}}{5}
Whakaoti mō n (complex solution)
n=\frac{\ln(a_{n})-\ln(\frac{4}{5})+\pi i}{\ln(5)+\pi i}+\frac{2\pi n_{1}i}{\ln(5)+\pi i}
n_{1}\in \mathrm{Z}
a_{n}\neq 0
Whakaoti mō a_n
a_{n}=-\frac{4\left(-5\right)^{n}}{5}
Denominator(n)\text{bmod}2=1
Whakaoti mō n
n=\frac{\ln(a_{n})+\ln(\frac{5}{4})}{\ln(5)}
a_{n}>0\text{ and }Numerator(\frac{-\ln(a_{n})+2\ln(2)}{\ln(5)})\text{bmod}2=0\text{ and }Denominator(\frac{-\ln(a_{n})+2\ln(2)}{\ln(5)})\text{bmod}2=1
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}