Whakaoti mō x, y
x=11
y=\frac{11\left(a_{6}+2\right)}{13}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
a 6 x - 13 y = - 22 \text { to find } y \text { if } x = 11
Tohaina
Kua tāruatia ki te papatopenga
x=11,a_{6}x-13y=-22
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x=11
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
a_{6}\times 11-13y=-22
Whakakapia te 11 mō te x ki tērā atu whārite, a_{6}x-13y=-22.
11a_{6}-13y=-22
Whakareatia a_{6} ki te 11.
-13y=-11a_{6}-22
Me tango 11a_{6} mai i ngā taha e rua o te whārite.
y=\frac{11a_{6}+22}{13}
Whakawehea ngā taha e rua ki te -13.
x=11,y=\frac{11a_{6}+22}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}