Whakaoti mō a
a=6
Tohaina
Kua tāruatia ki te papatopenga
\left(a-3\right)^{2}=\left(\sqrt{a+3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
a^{2}-6a+9=\left(\sqrt{a+3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-3\right)^{2}.
a^{2}-6a+9=a+3
Tātaihia te \sqrt{a+3} mā te pū o 2, kia riro ko a+3.
a^{2}-6a+9-a=3
Tangohia te a mai i ngā taha e rua.
a^{2}-7a+9=3
Pahekotia te -6a me -a, ka -7a.
a^{2}-7a+9-3=0
Tangohia te 3 mai i ngā taha e rua.
a^{2}-7a+6=0
Tangohia te 3 i te 9, ka 6.
a+b=-7 ab=6
Hei whakaoti i te whārite, whakatauwehea te a^{2}-7a+6 mā te whakamahi i te tātai a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(a-6\right)\left(a-1\right)
Me tuhi anō te kīanga whakatauwehe \left(a+a\right)\left(a+b\right) mā ngā uara i tātaihia.
a=6 a=1
Hei kimi otinga whārite, me whakaoti te a-6=0 me te a-1=0.
6-3=\sqrt{6+3}
Whakakapia te 6 mō te a i te whārite a-3=\sqrt{a+3}.
3=3
Whakarūnātia. Ko te uara a=6 kua ngata te whārite.
1-3=\sqrt{1+3}
Whakakapia te 1 mō te a i te whārite a-3=\sqrt{a+3}.
-2=2
Whakarūnātia. Ko te uara a=1 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
a=6
Ko te whārite a-3=\sqrt{a+3} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}