Aromātai
\frac{5a}{6}-\frac{7b}{3}
Whakaroha
\frac{5a}{6}-\frac{7b}{3}
Tohaina
Kua tāruatia ki te papatopenga
a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Tuhia te 2\times \frac{a+2b}{3} hei hautanga kotahi.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Tā te mea he rite te tauraro o \frac{3a}{3} me \frac{2a+4b}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Mahia ngā whakarea i roto o 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Whakakotahitia ngā kupu rite i 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{a-4b}{3} ki te \frac{2}{2}. Whakareatia \frac{a-2b}{2} ki te \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Tā te mea he rite te tauraro o \frac{2\left(a-4b\right)}{6} me \frac{3\left(a-2b\right)}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2a-8b+3a-6b}{6}
Mahia ngā whakarea i roto o 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Whakakotahitia ngā kupu rite i 2a-8b+3a-6b.
a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Tuhia te 2\times \frac{a+2b}{3} hei hautanga kotahi.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Tā te mea he rite te tauraro o \frac{3a}{3} me \frac{2a+4b}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Mahia ngā whakarea i roto o 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Whakakotahitia ngā kupu rite i 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{a-4b}{3} ki te \frac{2}{2}. Whakareatia \frac{a-2b}{2} ki te \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Tā te mea he rite te tauraro o \frac{2\left(a-4b\right)}{6} me \frac{3\left(a-2b\right)}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2a-8b+3a-6b}{6}
Mahia ngā whakarea i roto o 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Whakakotahitia ngā kupu rite i 2a-8b+3a-6b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}