Whakaoti mō a
a=\frac{x+1}{x-1}
x\neq 1
Whakaoti mō x
x=\frac{a+1}{a-1}
a\neq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax+a^{2}-x=a\left(a+1\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+a.
ax+a^{2}-x=a^{2}+a+1
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+1.
ax+a^{2}-x-a^{2}=a+1
Tangohia te a^{2} mai i ngā taha e rua.
ax-x=a+1
Pahekotia te a^{2} me -a^{2}, ka 0.
ax-x-a=1
Tangohia te a mai i ngā taha e rua.
ax-a=1+x
Me tāpiri te x ki ngā taha e rua.
\left(x-1\right)a=1+x
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x-1\right)a=x+1
He hanga arowhānui tō te whārite.
\frac{\left(x-1\right)a}{x-1}=\frac{x+1}{x-1}
Whakawehea ngā taha e rua ki te x-1.
a=\frac{x+1}{x-1}
Mā te whakawehe ki te x-1 ka wetekia te whakareanga ki te x-1.
ax+a^{2}-x=a\left(a+1\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+a.
ax+a^{2}-x=a^{2}+a+1
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+1.
ax-x=a^{2}+a+1-a^{2}
Tangohia te a^{2} mai i ngā taha e rua.
ax-x=a+1
Pahekotia te a^{2} me -a^{2}, ka 0.
\left(a-1\right)x=a+1
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(a-1\right)x}{a-1}=\frac{a+1}{a-1}
Whakawehea ngā taha e rua ki te -1+a.
x=\frac{a+1}{a-1}
Mā te whakawehe ki te -1+a ka wetekia te whakareanga ki te -1+a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}