Whakaoti mō a_2 (complex solution)
\left\{\begin{matrix}a_{2}=\frac{x+7}{y}\text{, }&y\neq 0\\a_{2}\in \mathrm{C}\text{, }&x=-7\text{ and }y=0\end{matrix}\right.
Whakaoti mō a_2
\left\{\begin{matrix}a_{2}=\frac{x+7}{y}\text{, }&y\neq 0\\a_{2}\in \mathrm{R}\text{, }&x=-7\text{ and }y=0\end{matrix}\right.
Whakaoti mō x
x=a_{2}y-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
a_{2}y=7+x
Me tāpiri te x ki ngā taha e rua.
ya_{2}=x+7
He hanga arowhānui tō te whārite.
\frac{ya_{2}}{y}=\frac{x+7}{y}
Whakawehea ngā taha e rua ki te y.
a_{2}=\frac{x+7}{y}
Mā te whakawehe ki te y ka wetekia te whakareanga ki te y.
a_{2}y=7+x
Me tāpiri te x ki ngā taha e rua.
ya_{2}=x+7
He hanga arowhānui tō te whārite.
\frac{ya_{2}}{y}=\frac{x+7}{y}
Whakawehea ngā taha e rua ki te y.
a_{2}=\frac{x+7}{y}
Mā te whakawehe ki te y ka wetekia te whakareanga ki te y.
-x=7-a_{2}y
Tangohia te a_{2}y mai i ngā taha e rua.
\frac{-x}{-1}=\frac{7-a_{2}y}{-1}
Whakawehea ngā taha e rua ki te -1.
x=\frac{7-a_{2}y}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x=a_{2}y-7
Whakawehe 7-a_{2}y ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}