Kimi Pārōnaki e ai ki a
3a^{2}
Aromātai
a^{3}
Tohaina
Kua tāruatia ki te papatopenga
a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2})+a^{2}\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
a^{1}\times 2a^{2-1}+a^{2}a^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
a^{1}\times 2a^{1}+a^{2}a^{0}
Whakarūnātia.
2a^{1+1}+a^{2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
2a^{2}+a^{2}
Whakarūnātia.
\left(2+1\right)a^{2}
Pahekotia ngā kīanga tau ōrite.
3a^{2}
Tāpiri 2 ki te 1.
a^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}