Tauwehe
\left(a-1\right)\left(a+1\right)a^{2}\left(a^{2}-a+1\right)\left(a^{2}+a+1\right)
Aromātai
a^{2}\left(a^{2}-1\right)\left(\left(a^{2}+1\right)^{2}-a^{2}\right)
Pātaitai
Polynomial
a ^ { 8 } - a ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
a^{2}\left(a^{6}-1\right)
Tauwehea te a^{2}.
\left(a^{3}-1\right)\left(a^{3}+1\right)
Whakaarohia te a^{6}-1. Tuhia anō te a^{6}-1 hei \left(a^{3}\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a^{2}+a+1\right)
Whakaarohia te a^{3}-1. Tuhia anō te a^{3}-1 hei a^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+1\right)\left(a^{2}-a+1\right)
Whakaarohia te a^{3}+1. Tuhia anō te a^{3}+1 hei a^{3}+1^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
a^{2}\left(a-1\right)\left(a^{2}+a+1\right)\left(a+1\right)\left(a^{2}-a+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: a^{2}-a+1,a^{2}+a+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}