Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}\left(a^{6}-1\right)
Tauwehea te a^{2}.
\left(a^{3}-1\right)\left(a^{3}+1\right)
Whakaarohia te a^{6}-1. Tuhia anō te a^{6}-1 hei \left(a^{3}\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a^{2}+a+1\right)
Whakaarohia te a^{3}-1. Tuhia anō te a^{3}-1 hei a^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+1\right)\left(a^{2}-a+1\right)
Whakaarohia te a^{3}+1. Tuhia anō te a^{3}+1 hei a^{3}+1^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
a^{2}\left(a-1\right)\left(a^{2}+a+1\right)\left(a+1\right)\left(a^{2}-a+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: a^{2}-a+1,a^{2}+a+1.