Tauwehe
\left(a-4\right)\left(a-3\right)a^{3}
Aromātai
\left(a-4\right)\left(a-3\right)a^{3}
Tohaina
Kua tāruatia ki te papatopenga
a^{3}\left(a^{2}-7a+12\right)
Tauwehea te a^{3}.
p+q=-7 pq=1\times 12=12
Whakaarohia te a^{2}-7a+12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa+12. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
p=-4 q=-3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(a^{2}-4a\right)+\left(-3a+12\right)
Tuhia anō te a^{2}-7a+12 hei \left(a^{2}-4a\right)+\left(-3a+12\right).
a\left(a-4\right)-3\left(a-4\right)
Tauwehea te a i te tuatahi me te -3 i te rōpū tuarua.
\left(a-4\right)\left(a-3\right)
Whakatauwehea atu te kīanga pātahi a-4 mā te whakamahi i te āhuatanga tātai tohatoha.
a^{3}\left(a-4\right)\left(a-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}