Tauwehe
\left(a^{2}+4\right)\left(a-2\right)^{3}
Aromātai
\left(a^{2}+4\right)\left(a-2\right)^{3}
Tohaina
Kua tāruatia ki te papatopenga
a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32=0
Kia tauwehea ai te kīanga, me whakaoti te whārite ina ōrite ki te 0.
±32,±16,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -32, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{4}-4a^{3}+8a^{2}-16a+16=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32 ki te a-2, kia riro ko a^{4}-4a^{3}+8a^{2}-16a+16. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
±16,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 16, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{3}-2a^{2}+4a-8=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{4}-4a^{3}+8a^{2}-16a+16 ki te a-2, kia riro ko a^{3}-2a^{2}+4a-8. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -8, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+4=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}-2a^{2}+4a-8 ki te a-2, kia riro ko a^{2}+4. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
a=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te 4 mō te c i te ture pūrua.
a=\frac{0±\sqrt{-16}}{2}
Mahia ngā tātaitai.
a^{2}+4
Kāore te pūrau a^{2}+4 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
\left(a^{2}+4\right)\left(a-2\right)^{3}
Me tuhi anō te kīanga whakatauwehe mā ngā pūtake i riro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}