Aromātai
\frac{3a^{5}}{2}
Kimi Pārōnaki e ai ki a
\frac{15a^{4}}{2}
Tohaina
Kua tāruatia ki te papatopenga
a^{5}+\frac{5}{6}a^{5}\times \frac{3}{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 2 kia riro ai te 5.
a^{5}+\frac{1}{2}a^{5}
Whakareatia te \frac{5}{6} ki te \frac{3}{5}, ka \frac{1}{2}.
\frac{3}{2}a^{5}
Pahekotia te a^{5} me \frac{1}{2}a^{5}, ka \frac{3}{2}a^{5}.
5a^{5-1}+3\times \frac{\frac{5}{2}a^{2}}{5}a^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
5a^{4}+3\times \frac{\frac{5}{2}a^{2}}{5}a^{3-1}
Tango 1 mai i 5.
5a^{4}+\frac{3a^{2}}{2}a^{3-1}
Whakareatia 3 ki te \frac{3}{5}\times \frac{5}{6}a^{2}.
5a^{4}+\frac{3a^{2}}{2}a^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}