Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{4}-64a^{2}+900=0
Whakareatia te 25 ki te 36, ka 900.
t^{2}-64t+900=0
Whakakapia te t mō te a^{2}.
t=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 1\times 900}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -64 mō te b, me te 900 mō te c i te ture pūrua.
t=\frac{64±4\sqrt{31}}{2}
Mahia ngā tātaitai.
t=2\sqrt{31}+32 t=32-2\sqrt{31}
Whakaotia te whārite t=\frac{64±4\sqrt{31}}{2} ina he tōrunga te ±, ina he tōraro te ±.
a=-\left(\sqrt{31}+1\right) a=\sqrt{31}+1 a=1-\sqrt{31} a=-\left(1-\sqrt{31}\right)
I te mea ko a=t^{2}, ka riro ngā otinga mā te arotake i te a=±\sqrt{t} mō ia t.
a^{4}-64a^{2}+900=0
Whakareatia te 25 ki te 36, ka 900.
t^{2}-64t+900=0
Whakakapia te t mō te a^{2}.
t=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 1\times 900}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -64 mō te b, me te 900 mō te c i te ture pūrua.
t=\frac{64±4\sqrt{31}}{2}
Mahia ngā tātaitai.
t=2\sqrt{31}+32 t=32-2\sqrt{31}
Whakaotia te whārite t=\frac{64±4\sqrt{31}}{2} ina he tōrunga te ±, ina he tōraro te ±.
a=\sqrt{31}+1 a=-\left(\sqrt{31}+1\right) a=-\left(1-\sqrt{31}\right) a=1-\sqrt{31}
I te mea ko a=t^{2}, ka riro ngā otinga mā te arotake i te a=±\sqrt{t} mō ia t.