Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-3t-2=0
Whakakapia te t mō te a^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-2\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te -2 mō te c i te ture pūrua.
t=\frac{3±\sqrt{17}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{17}+3}{2} t=\frac{3-\sqrt{17}}{2}
Whakaotia te whārite t=\frac{3±\sqrt{17}}{2} ina he tōrunga te ±, ina he tōraro te ±.
a=\frac{\sqrt{2\sqrt{17}+6}}{2} a=-\frac{\sqrt{2\sqrt{17}+6}}{2}
I te mea ko a=t^{2}, ka riro ngā otinga mā te arotake i te a=±\sqrt{t} mō t tōrunga.