Aromātai
a^{3}-1
Tauwehe
\left(a-1\right)\left(a^{2}+a+1\right)
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
a ^ { 3 } - 4 \cdot ( 0 ) ^ { 2 } + 2 \cdot ( 0 ) - 1 =
Tohaina
Kua tāruatia ki te papatopenga
a^{3}-4\times 0+2\times 0-1
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
a^{3}-0+2\times 0-1
Whakareatia te 4 ki te 0, ka 0.
a^{3}-0+0-1
Whakareatia te 2 ki te 0, ka 0.
a^{3}-0-1
Tangohia te 1 i te 0, ka -1.
a^{3}+0-1
Whakareatia te -1 ki te 0, ka 0.
a^{3}-1
Ko te tau i tāpiria he kore ka hua koia tonu.
a^{3}-1
Whakarea ka paheko i ngā kīanga tau ōrite.
\left(a-1\right)\left(a^{2}+a+1\right)
Tuhia anō te a^{3}-1 hei a^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right). Kāore te pūrau a^{2}+a+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}