Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -72, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+2a-24=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}+5a^{2}-18a-72 ki te a+3, kia riro ko a^{2}+2a-24. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-2±\sqrt{2^{2}-4\times 1\left(-24\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 2 mō te b, me te -24 mō te c i te ture pūrua.
a=\frac{-2±10}{2}
Mahia ngā tātaitai.
a=-6 a=4
Whakaotia te whārite a^{2}+2a-24=0 ina he tōrunga te ±, ina he tōraro te ±.
a=-3 a=-6 a=4
Rārangitia ngā otinga katoa i kitea.