Whakaoti mō b (complex solution)
\left\{\begin{matrix}\\b=-\left(ax+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=\frac{2}{x}\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}\\b=-\left(ax+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=\frac{2}{x}\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{b+1}{x}\text{; }a=\frac{2}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=-1\text{ and }x=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{b+1}{x}\text{; }a=\frac{2}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=-1\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
a^{2}x^{2}+abx-ax=2+2b
Whakamahia te āhuatanga tohatoha hei whakarea te ab-a ki te x.
a^{2}x^{2}+abx-ax-2b=2
Tangohia te 2b mai i ngā taha e rua.
abx-ax-2b=2-a^{2}x^{2}
Tangohia te a^{2}x^{2} mai i ngā taha e rua.
abx-2b=2-a^{2}x^{2}+ax
Me tāpiri te ax ki ngā taha e rua.
abx-2b=-a^{2}x^{2}+ax+2
Whakaraupapatia anō ngā kīanga tau.
\left(ax-2\right)b=-a^{2}x^{2}+ax+2
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(ax-2\right)b=2+ax-a^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(ax-2\right)b}{ax-2}=-\frac{\left(ax-2\right)\left(ax+1\right)}{ax-2}
Whakawehea ngā taha e rua ki te -2+ax.
b=-\frac{\left(ax-2\right)\left(ax+1\right)}{ax-2}
Mā te whakawehe ki te -2+ax ka wetekia te whakareanga ki te -2+ax.
b=-\left(ax+1\right)
Whakawehe -\left(-2+ax\right)\left(1+ax\right) ki te -2+ax.
a^{2}x^{2}+abx-ax=2+2b
Whakamahia te āhuatanga tohatoha hei whakarea te ab-a ki te x.
a^{2}x^{2}+abx-ax-2b=2
Tangohia te 2b mai i ngā taha e rua.
abx-ax-2b=2-a^{2}x^{2}
Tangohia te a^{2}x^{2} mai i ngā taha e rua.
abx-2b=2-a^{2}x^{2}+ax
Me tāpiri te ax ki ngā taha e rua.
abx-2b=-a^{2}x^{2}+ax+2
Whakaraupapatia anō ngā kīanga tau.
\left(ax-2\right)b=-a^{2}x^{2}+ax+2
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(ax-2\right)b=2+ax-a^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(ax-2\right)b}{ax-2}=-\frac{\left(ax-2\right)\left(ax+1\right)}{ax-2}
Whakawehea ngā taha e rua ki te -2+ax.
b=-\frac{\left(ax-2\right)\left(ax+1\right)}{ax-2}
Mā te whakawehe ki te -2+ax ka wetekia te whakareanga ki te -2+ax.
b=-\left(ax+1\right)
Whakawehe -\left(-2+ax\right)\left(1+ax\right) ki te -2+ax.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}