Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p+q=-1 pq=1\left(-12\right)=-12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa-12. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
p=-4 q=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(a^{2}-4a\right)+\left(3a-12\right)
Tuhia anō te a^{2}-a-12 hei \left(a^{2}-4a\right)+\left(3a-12\right).
a\left(a-4\right)+3\left(a-4\right)
Tauwehea te a i te tuatahi me te 3 i te rōpū tuarua.
\left(a-4\right)\left(a+3\right)
Whakatauwehea atu te kīanga pātahi a-4 mā te whakamahi i te āhuatanga tātai tohatoha.
a^{2}-a-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Whakareatia -4 ki te -12.
a=\frac{-\left(-1\right)±\sqrt{49}}{2}
Tāpiri 1 ki te 48.
a=\frac{-\left(-1\right)±7}{2}
Tuhia te pūtakerua o te 49.
a=\frac{1±7}{2}
Ko te tauaro o -1 ko 1.
a=\frac{8}{2}
Nā, me whakaoti te whārite a=\frac{1±7}{2} ina he tāpiri te ±. Tāpiri 1 ki te 7.
a=4
Whakawehe 8 ki te 2.
a=-\frac{6}{2}
Nā, me whakaoti te whārite a=\frac{1±7}{2} ina he tango te ±. Tango 7 mai i 1.
a=-3
Whakawehe -6 ki te 2.
a^{2}-a-12=\left(a-4\right)\left(a-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -3 mō te x_{2}.
a^{2}-a-12=\left(a-4\right)\left(a+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.