Whakaoti mō a
a=-4
a=12
Tohaina
Kua tāruatia ki te papatopenga
a+b=-8 ab=-48
Hei whakaoti i te whārite, whakatauwehea te a^{2}-8a-48 mā te whakamahi i te tātai a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(a-12\right)\left(a+4\right)
Me tuhi anō te kīanga whakatauwehe \left(a+a\right)\left(a+b\right) mā ngā uara i tātaihia.
a=12 a=-4
Hei kimi otinga whārite, me whakaoti te a-12=0 me te a+4=0.
a+b=-8 ab=1\left(-48\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei a^{2}+aa+ba-48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(a^{2}-12a\right)+\left(4a-48\right)
Tuhia anō te a^{2}-8a-48 hei \left(a^{2}-12a\right)+\left(4a-48\right).
a\left(a-12\right)+4\left(a-12\right)
Tauwehea te a i te tuatahi me te 4 i te rōpū tuarua.
\left(a-12\right)\left(a+4\right)
Whakatauwehea atu te kīanga pātahi a-12 mā te whakamahi i te āhuatanga tātai tohatoha.
a=12 a=-4
Hei kimi otinga whārite, me whakaoti te a-12=0 me te a+4=0.
a^{2}-8a-48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-48\right)}}{2}
Pūrua -8.
a=\frac{-\left(-8\right)±\sqrt{64+192}}{2}
Whakareatia -4 ki te -48.
a=\frac{-\left(-8\right)±\sqrt{256}}{2}
Tāpiri 64 ki te 192.
a=\frac{-\left(-8\right)±16}{2}
Tuhia te pūtakerua o te 256.
a=\frac{8±16}{2}
Ko te tauaro o -8 ko 8.
a=\frac{24}{2}
Nā, me whakaoti te whārite a=\frac{8±16}{2} ina he tāpiri te ±. Tāpiri 8 ki te 16.
a=12
Whakawehe 24 ki te 2.
a=-\frac{8}{2}
Nā, me whakaoti te whārite a=\frac{8±16}{2} ina he tango te ±. Tango 16 mai i 8.
a=-4
Whakawehe -8 ki te 2.
a=12 a=-4
Kua oti te whārite te whakatau.
a^{2}-8a-48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}-8a-48-\left(-48\right)=-\left(-48\right)
Me tāpiri 48 ki ngā taha e rua o te whārite.
a^{2}-8a=-\left(-48\right)
Mā te tango i te -48 i a ia ake anō ka toe ko te 0.
a^{2}-8a=48
Tango -48 mai i 0.
a^{2}-8a+\left(-4\right)^{2}=48+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-8a+16=48+16
Pūrua -4.
a^{2}-8a+16=64
Tāpiri 48 ki te 16.
\left(a-4\right)^{2}=64
Tauwehea a^{2}-8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-4\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-4=8 a-4=-8
Whakarūnātia.
a=12 a=-4
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}