Whakaoti mō a
a=-2
a=10
Tohaina
Kua tāruatia ki te papatopenga
a^{2}-7a-a=20
Tangohia te a mai i ngā taha e rua.
a^{2}-8a=20
Pahekotia te -7a me -a, ka -8a.
a^{2}-8a-20=0
Tangohia te 20 mai i ngā taha e rua.
a+b=-8 ab=-20
Hei whakaoti i te whārite, whakatauwehea te a^{2}-8a-20 mā te whakamahi i te tātai a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(a-10\right)\left(a+2\right)
Me tuhi anō te kīanga whakatauwehe \left(a+a\right)\left(a+b\right) mā ngā uara i tātaihia.
a=10 a=-2
Hei kimi otinga whārite, me whakaoti te a-10=0 me te a+2=0.
a^{2}-7a-a=20
Tangohia te a mai i ngā taha e rua.
a^{2}-8a=20
Pahekotia te -7a me -a, ka -8a.
a^{2}-8a-20=0
Tangohia te 20 mai i ngā taha e rua.
a+b=-8 ab=1\left(-20\right)=-20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei a^{2}+aa+ba-20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(a^{2}-10a\right)+\left(2a-20\right)
Tuhia anō te a^{2}-8a-20 hei \left(a^{2}-10a\right)+\left(2a-20\right).
a\left(a-10\right)+2\left(a-10\right)
Tauwehea te a i te tuatahi me te 2 i te rōpū tuarua.
\left(a-10\right)\left(a+2\right)
Whakatauwehea atu te kīanga pātahi a-10 mā te whakamahi i te āhuatanga tātai tohatoha.
a=10 a=-2
Hei kimi otinga whārite, me whakaoti te a-10=0 me te a+2=0.
a^{2}-7a-a=20
Tangohia te a mai i ngā taha e rua.
a^{2}-8a=20
Pahekotia te -7a me -a, ka -8a.
a^{2}-8a-20=0
Tangohia te 20 mai i ngā taha e rua.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-20\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-20\right)}}{2}
Pūrua -8.
a=\frac{-\left(-8\right)±\sqrt{64+80}}{2}
Whakareatia -4 ki te -20.
a=\frac{-\left(-8\right)±\sqrt{144}}{2}
Tāpiri 64 ki te 80.
a=\frac{-\left(-8\right)±12}{2}
Tuhia te pūtakerua o te 144.
a=\frac{8±12}{2}
Ko te tauaro o -8 ko 8.
a=\frac{20}{2}
Nā, me whakaoti te whārite a=\frac{8±12}{2} ina he tāpiri te ±. Tāpiri 8 ki te 12.
a=10
Whakawehe 20 ki te 2.
a=-\frac{4}{2}
Nā, me whakaoti te whārite a=\frac{8±12}{2} ina he tango te ±. Tango 12 mai i 8.
a=-2
Whakawehe -4 ki te 2.
a=10 a=-2
Kua oti te whārite te whakatau.
a^{2}-7a-a=20
Tangohia te a mai i ngā taha e rua.
a^{2}-8a=20
Pahekotia te -7a me -a, ka -8a.
a^{2}-8a+\left(-4\right)^{2}=20+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-8a+16=20+16
Pūrua -4.
a^{2}-8a+16=36
Tāpiri 20 ki te 16.
\left(a-4\right)^{2}=36
Tauwehea a^{2}-8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-4\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-4=6 a-4=-6
Whakarūnātia.
a=10 a=-2
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}