Whakaoti mō a
a=10\sqrt{5}+30\approx 52.360679775
a=30-10\sqrt{5}\approx 7.639320225
Tohaina
Kua tāruatia ki te papatopenga
a^{2}-60a+400=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 400}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -60 mō b, me 400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-60\right)±\sqrt{3600-4\times 400}}{2}
Pūrua -60.
a=\frac{-\left(-60\right)±\sqrt{3600-1600}}{2}
Whakareatia -4 ki te 400.
a=\frac{-\left(-60\right)±\sqrt{2000}}{2}
Tāpiri 3600 ki te -1600.
a=\frac{-\left(-60\right)±20\sqrt{5}}{2}
Tuhia te pūtakerua o te 2000.
a=\frac{60±20\sqrt{5}}{2}
Ko te tauaro o -60 ko 60.
a=\frac{20\sqrt{5}+60}{2}
Nā, me whakaoti te whārite a=\frac{60±20\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 60 ki te 20\sqrt{5}.
a=10\sqrt{5}+30
Whakawehe 60+20\sqrt{5} ki te 2.
a=\frac{60-20\sqrt{5}}{2}
Nā, me whakaoti te whārite a=\frac{60±20\sqrt{5}}{2} ina he tango te ±. Tango 20\sqrt{5} mai i 60.
a=30-10\sqrt{5}
Whakawehe 60-20\sqrt{5} ki te 2.
a=10\sqrt{5}+30 a=30-10\sqrt{5}
Kua oti te whārite te whakatau.
a^{2}-60a+400=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}-60a+400-400=-400
Me tango 400 mai i ngā taha e rua o te whārite.
a^{2}-60a=-400
Mā te tango i te 400 i a ia ake anō ka toe ko te 0.
a^{2}-60a+\left(-30\right)^{2}=-400+\left(-30\right)^{2}
Whakawehea te -60, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -30. Nā, tāpiria te pūrua o te -30 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-60a+900=-400+900
Pūrua -30.
a^{2}-60a+900=500
Tāpiri -400 ki te 900.
\left(a-30\right)^{2}=500
Tauwehea a^{2}-60a+900. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-30\right)^{2}}=\sqrt{500}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-30=10\sqrt{5} a-30=-10\sqrt{5}
Whakarūnātia.
a=10\sqrt{5}+30 a=30-10\sqrt{5}
Me tāpiri 30 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}